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1. Introduction 

Various theoretical scattering models have been developed over the years for 
characterizing the electromagnetic responses of trees within the context of 
microwave remote sensing and foliage-penetrating radar applications.1–15 These 
research efforts can be loosely categorized into 2 main classes: The first class is 
derived from radiative transfer theory, which assumes the tree canopy to be a 
uniform layer containing a random distribution of scatterers and relies on the use 
of statistical averages for the calculation of extinction, source, and phase matrices 
(or coefficients); the second class is based on the so-called discrete scatterer 
approach, which is a more deterministic method that seeks to directly account for 
individual scattering mechanisms. (Note that a vegetation canopy can also be 
treated as a continuous medium with a fluctuating permittivity function; this 
approach, however, is most appropriate and tractable for weakly scattering media 
in which the fluctuating function is small relative to its mean value.5) While 
traditional radiative transfer theory has been applied successfully to a number of 
remote sensing scenarios involving complex forest canopy structures,16 this 
method does not account for the coherent scattering effects occurring within the 
tree structure and therefore cannot be used to compute the phase response of a 
scene. On the contrary, the discrete scatterer approach—which first decomposes a 
tree structure (trunk, branch complex, and leaves/needles) into simple-shaped 
scatterers such as finite-length dielectric cylinders and dielectric disks and then 
calculates the collective return by summing the scattered fields from each 
scatterer—is a coherent technique that can be employed to deduce the generalized 
polarimetric response. The development of the discrete scatterer approach, then, is 
dependent upon a thorough understanding of the scattering effects of dielectric 
cylinders and disks—preferably through the derivation of closed-form expressions 
for their scattering matrices. The subject of interest in this work is the scattering 
from a finite-length, dielectric circular cylinder, which is the elementary 
component used to model the trunk and branching structure of a tree. (The 
leaves/needles of a tree are commonly approximated as disks. At the lower 
frequency bands, the effects of the leaves/needles are often assumed to be 
negligible; thus, a study of the scattering from disks is not included in the current 
work.) 

The organization of the work is as follows. In Section 2 a complete derivation of 
the scattering matrix of the finite-length, dielectric circular cylinder is presented. 
A closed-form, approximate solution is obtained by applying the modal (or eigen-
function) expansion method in conjunction with the volumetric equivalence 
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principle; the formulation exploits the supposition that the internal fields of the 
finite-length cylinder are the same as those of the infinite-length case. The theory 
is first developed for a cylinder in free space. Subsequently, the problem of the 
cylinder located above a finite-conducting ground is considered in Section 3, in 
which a multiray technique is employed to deal with the effects of the half space; 
essentially, this approach calculates the total scattering response by coherently 
summing the first-order direct response and the single and double ground bounce 
contributions. An arbitrarily oriented cylinder is treated by augmenting the 
solution with appropriate coordinate transformation matrices. In Section 4, 
simulation results are presented to demonstrate the utility of the analytical 
solution. Finally, in Section 5, a summary of the overall work is given. 

2. Semi-Exact Solution in Free Space 

In the current problem, the incident and scattered wave directions ( îk , ˆ
sk ) and 

their associated polarization vectors ( ĥ , v̂ ) are defined by 

 ˆ ˆ ˆ ˆsin cos sin sin cosi i i i i ik x y zθ φ θ φ θ= + − ;  (1) 

 ˆ ˆ ˆ ˆsin cos sin sin coss s s s s sk x y zθ φ θ φ θ= + + ;  (2) 

 ,
,

,

ˆˆˆ
ˆˆ
i s

i s
i s

z k
h

z k

×
=

×
;  (3) 

 , , ,
ˆ ˆ

î s i s i sv h k= × ;  (4) 

in which the subscripts i and s identify quantities related to the incident and 
scattered waves, respectively; iθ  is the incidence angle in elevation (measured 
from - ẑ ); sθ  is the scattering angle in elevation (measured from + ẑ ); and ,i sφ is 

the incidence/scattering angle in azimuth (measured from + x̂ ). Without the loss 
of generality, a vertically polarized (TMz) plane wave is taken as the source of 
excitation; that is, with time convention of tje ω  and designating the wave number 
in free space as ok , the incident electric field is simply ( ) ˆˆ o ijk k ri

o iE r E v e− ⋅=
 
. This 

wave is impinging on a dielectric circular cylinder with radius a and relative 
dielectric constant εr. Here, for the initial discussions, the cylinder is centered at 
the origin, with its axis aligned with the z-axis. The first step is to derive the fields 
inside an infinite-length cylinder—which has an exact modal solution; 
subsequently, the scattering response of the finite-length case is deduced by 
approximating the cylinder’s internal fields with those of the infinite-length case. 
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It can be shown that the z-component of the electric field of the incident wave can 
be expanded as  

 ( ) ( ) ( )
,, , ijni n

z o n i
n

E z E j J k e φ φ
ρρ φ ρ

+∞
−−

=−∞

= ∑ ,  (5) 

with ,sin z ijk z
o o iE E eθ= − , , cosz i o ik k θ= , and , sini o ik kρ θ= . Note that 0i

zH =  for 

a TMz wave. It is theorized that the z-components of the scattered and internal 
electric and magnetic fields of the infinite-length cylinder can be written in the 
following forms: 

 ( ) ( ) ( )(2)
,, , ijns

z o n n i
n

E z E A H k e φ φ
ρρ φ ρ

+∞
−

=−∞

= ∑ ;  (6) 

 ( ) ( ) ( )
,, , ijnd

z o n n r
n

E z E B J k e φ φ
ρρ φ ρ

+∞
−

=−∞

= ∑ ;  (7) 

 ( ) ( ) ( )(2)
,, , ijns

z o n n i
n

H z E C H k e φ φ
ρρ φ ρ

+∞
−

=−∞

= ∑ ;  (8) 

 ( ) ( ) ( )
,, , ijnd

z o n n r
n

H z E D J k e φ φ
ρρ φ ρ

+∞
−

=−∞

= ∑  (9) 

where 2
, cosr o r ik kρ ε θ= − ; and nA , nB , nC , and nD  are unknowns to be 

determined.  
 
Noting that 

 
2
, ,

2 2

1 11 z i z i z zk k E HE
j jφ ω µε ω µε ρ φ ωε ρ

  − ∂ ∂
− = ⋅ ⋅ − ⋅   ∂ ∂ 

;  (10) 

 
2
, ,

2 2

1 11 z i z i z zk k H EH
j jφ ω µε ω µε ρ φ ωµ ρ

  − ∂ ∂
− = ⋅ ⋅ + ⋅   ∂ ∂ 

,  (11) 

the φ -components of the same set of electric and magnetic fields can be 
formulated as follows: 

 ( ) ( ) ( )
,2

cos, ,
sin

ijni ni
o n i

no i

E z E j nJ k e
k

φ φ
φ ρ

θρ φ ρ
ρ θ

+∞
−−

=−∞

= − ⋅ ∑ ;  (12) 



 

4 
 

( ) ( ) ( ) ( )(2) (2)
, ,2

cos, , ' ;
sin sin

ijns i o
o n n i n n i

n o i o i

kE z E nA H k C H k e
k j

φ φ
φ ρ ρ

θρ φ ρ ρ
ρ θ ωε θ

+∞
−

=−∞

 −
= − 

 
∑

 (13) 

( ) ( ) ( ) ( ) ( )
, ,2 2

cos, , ' ;
cos cos

ijnd i o
o n n r n n r

n o r i o r i

kE z E nB J k D J k e
k j

φ φ
φ ρ ρ

θρ φ ρ ρ
ρ ε θ ωε ε θ

+∞
−

=−∞

 −
 = −

− − 
∑

 (14) 

 ( ) ( ) ( )
,, , '

sin
ijni no

o n i
no i

kH z E j J k e
j

φ φ
φ ρρ φ ρ

ωµ θ

+∞
−−

=−∞

= ⋅ ∑ ;  (15) 

( ) ( ) ( ) ( )(2) (2)
, ,2

cos, , ' ;
sin sin

ijns i o
o n n i n n i

n o i o i

kH z E nC H k A H k e
k j u

φ φ
φ ρ ρ

θρ φ ρ ρ
ρ θ ω θ

+∞
−

=−∞

 −
= + 

 
∑

 (16) 

( ) ( ) ( ) ( ) ( )
, ,2 2

cos, , ' .
cos cos

ijnd i r o
o n n r n n r

n o r i o r i

kH z E nD J k B J k e
k j u

φ φ
φ ρ ρ

θ ερ φ ρ ρ
ρ ε θ ω ε θ

+∞
−

=−∞

 −
 = +

− − 
∑

 (17) 

The unknowns nA , nB , nC , and nD  can be found by matching the tangential 
electric and magnetic-field components at the cylinder’s surface. It can be shown 
that 

 ( ) ( ),(2)
,

n

n n n i
nn i

j jA M J k a
RH k a ρ

ρ

−  −
= ⋅ − 

 
;  (18) 

 
( )

1

,

n
n

n
n r n

j MB
J k a Rρ

− +−
= ;  (19) 

 
( )
( )

,

(2)
,

n r
n n

n i

J k a
C D

H k a
ρ

ρ

= ;  (20) 

 
( ),

cosn
o i

n
o n r n

j k nWD
u J k a Rρ

θ
ω

−−
= ;  (21) 

where  
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( ) ( )2 (2)

, , 2 2 2cos
2

i n i
n n n i

k a H k a
R M N W nρ ρπ

θ = ⋅ ⋅ −  ;  (22) 

 ( ) ( ), ,n n i n rM H k a J k aρ ρ= −  ;  (23) 

 ( ) ( ), ,n n i r n rN H k a J k aρ ρε= −  ;  (24) 

 ( ) ( )
( )

(2)
,

, (2)
, ,

'n i
n i

i n i

H k a
H k a

k aH k a
ρ

ρ
ρ ρ

= ;  (25) 

 ( ) ( )
( )

,
,

, ,

'n r
n r

r n r

J k a
J k a

k aJ k a
ρ

ρ
ρ ρ

= ;  (26) 

 
( ) ( )2 2

, ,

1 1

i r

W
k a k aρ ρ

= − .  (27) 

 
Consequently, the ρ -component of the electric field inside the cylinder can be 
expressed as 

( ) ( ) ( ) ( )
2

, ,2 2

cos cos, , 1 ' .
cos cos

ijnd n i n i
o n r n r

n r o r i r i

nD jBE z E J k J k e φ φ
ρ ρ ρ

θ θρ ϕ ρ ρ
ωε ε ρ ε θ ε θ

+∞
−

=−∞

    
 = ⋅ − +   − −    

∑

 (28) 

The fields inside an infinite-length cylinder ( )zEd ,,φρ


 are then completely 
characterized by Eqs. 7, 14, and 28. 

In view of the volumetric equivalence principle, an approximate solution for the 
scattering response ( ), ,s

s sE r θ φ


 of a cylinder with length L can be calculated 

using the internal fields of the infinite-length problem treated above; that is, in the 
far field, 
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( ) ( )( ) ( ) ( )
/2 2

ˆ ˆ ˆ' ' ' '2

/2 0 0

ˆ ˆ ˆ ˆ, , 1 ', ', ' ' ' ' '.
4

o
o s

L ajk r
jk k z zs d

s s o r s s s s
L

eE r k h h v v E z e d d dz
r

π
ρ ρθ φ ε ρ φ ρ φ ρ

π

+−
⋅ +

−

= − + ⋅∫ ∫ ∫
 

 (29) 

After substituting Eqs. 7, 14, and 28 into 29, the integration over the cylinder’s 
volume can be facilitated by noting the following relations: 

 ( ) ( )






 +

=∫
+

−

+

2
coscossinc'

2/

2/

coscos' sio
L

L

zjk LkLdze sio
θθθθ ;  (30) 

( ) ( ) ( ) ( ) ( ),

2
'cos ' '

, ,
,0

sincos ' ' 2 cos ' ' ' ;
'

s is s i jnjk jn n s
s n s n s n

s

ne d j j J k J k e C
k

ρ

π
φ φρ φ φ φ φ

ρ ρ
ρ

φφ φ π φ ρ ρ
ρ

−− + −  
= − + = 

  
∫
 (31) 

( ) ( ) ( ) ( ) ( ),

2
'cos ' '

, ,
,0

cossin ' ' 2 sin ' ' ' ;
'

s is s i jnjk jn n s
s n s n s n

s

ne d j j J k J k e S
k

ρ

π
φ φρ φ φ φ φ

ρ ρ
ρ

φφ φ π φ ρ ρ
ρ

−− + −  
= − − = 

  
∫
 (32) 

( ) ( ) ( ) ( )

( ) ( ) ( )

, , , ,
, ,0

1 1

1 ' '' ' ' ' ' ' ' ' ' '
4 ' '

1 ' ' ' ' ;
4

s is s

a
n

n r n r n n r n r n
r r

jnj j
n n

nb naj ja J k J k S J k jb J k C d
k k

b ja I e b ja I e e

ρ ρ ρ ρ
ρ ρ

φ φφ φ

ρ ρ ρ ρ ρ ρ
π ρ ρ

−

−−
+ −

    
+ − −            

 = − + + 

∫

 (33) 

( ) ( ) ( ) ( )

( ) ( ) ( )

, , , ,
, ,0

1 1

1 ' '' ' ' ' ' ' ' ' ' '
4 ' '

' ' ' ' ;
4

s is s

a
n

n r n r n n r n r n
r r

jnj j
n n

nb naj ja J k J k C J k jb J k S d
k k

j b ja I e b ja I e e

ρ ρ ρ ρ
ρ ρ

φ φφ φ

ρ ρ ρ ρ ρ ρ
π ρ ρ

−

−−
+ −

    
+ + −            

 = − − + 

∫

 (34) 

 ( ) ( ) n

a

snrn IdkJkJ =∫
0

,, '''' ρρρρ ρρ ;  (35) 

where 
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 ( ) ( ) ( ) ( ) ( ) ( )( )akJakaJkakJakaJk
akak

aI snrnsrnsnr
sr

n ,1,,,1,,2
,

2
,

2

ρρρρρρ
ρρ

++ −
−

= ;  (36) 

 , sins o sk kρ θ= .  (37) 

After much algebraic manipulation, the scattering matrix elements corresponding 
to a vertically polarized excitation wave are shown to be given by 

( ) ( ) ( ) ( )
2

1, 2, 3,

1 cos cosˆ ˆ ˆ, sinc ,
2 2

s ijno r o i sl
pv s i s n n n

n

k L k L
S k k p K K e φ φε θ θ +∞

−

=−∞

− + 
 = ⋅ Κ + +   

 
∑

 

 (38) 

where p = v, h and  

 ( )( )1
1,

,

ˆ ˆ
2

sj
o n

n n n
r

jk I e j x jy
k

φ

ρ

β α+Κ = − −


;  (39) 

 ( )( )1
2,

,

ˆ ˆ
2

sj
o n

n n n
r

jk I e j x jy
k

φ

ρ

β α
−

−Κ = − + +


;  (40) 

 3, ˆn n nI zγΚ =


;  (41) 

 
( ),

sin cosn i i
n

n r n

jM
J k a Rρ

θ θα = ;  (42) 

 
( ),

sin cosi i
n

n r n

nW
J k a Rρ

θ θβ = ;  (43) 

 
( ),

sinn i
n

n r n

jM
J k a Rρ

θγ = .  (44) 

For a horizontally polarized excitation wave, the derivation for the scattering 
matrix elements ( )ˆ ˆ,l

ph s iS k k  closely follows the one outlined above; it is seen that 

they can be obtained from Eq. 38 simply by redefining nα , nβ , and nγ  as 
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( )

2

,

sin cosi i
n

n r n

nW
J k a Rρ

θ θα −
= ;  (45) 

 
( ),

sinn i
n

n r n

jN
J k a Rρ

θβ = ;  (46) 

 
( ),

sin cosi i
n

n r n

nW
J k a Rρ

θ θγ −
= .  (47) 

Expressions for ( )ˆ ˆ,l
pv s iS k k  and ( )ˆ ˆ,l

ph s iS k k  here match the formulations from 

Karam et al.17 (Note that there are typographical errors in Eq. 25 of that journal 
article.17) 

3. Multiray Solution in the Presence of a Half Space 

For the case when the cylinder is located above a finite-conducting ground (with 
the air–ground interface at z = 0), a total scattering matrix can be constructed by 
summing the direct wave from the cylinder and the ground-reflected waves. 
Succinctly, the first 4 main contributions can be written as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ

,

ˆ ˆ ˆ ˆ

, , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,

o i o s o o i g s o

o i o s g o i g s g

g gjk k r k r jk k r k r
s i s i s i g i

g gjk k r k r jk k r k r
s s g i s s g i g i

S k k S k k e S k k k e

k S k k e k S k k k e

− ⋅ − ⋅ − ⋅ − ⋅

− ⋅ − ⋅ − ⋅ − ⋅

= + ⋅Γ

+Γ ⋅ + Γ ⋅ ⋅Γ

   

   

 (48) 

where or
  is the location of the center of the cylinder;  ( )ˆ ˆ2g o or r r z z= − ⋅

   ; 

( ),
ˆ ˆ ˆ ˆ ˆ2i g i ik k k z z= − ⋅ ; ( ),

ˆ ˆ ˆ ˆ ˆ2s g s sk k k z z= − ⋅ ; ( ),
g

S ⋅ ⋅  is the cylinder response in free 

space; and ( ),î skΓ  is the ground-reflection-coefficient matrix 

 ( ) ( )
( )

,

,

,

ˆ 0
ˆ

ˆ0

v i s

i s

h i s

r k
k

r k

 
 Γ =  
  

,  (49) 

with ( ),
ˆ

v i sr k  and ( ),
ˆ

h i sr k  as the ordinary horizontally and vertically polarized 

ground reflection coefficients, respectively. The first term in Eq. 48 is the direct 
wave from the cylinder; the second and third terms correspond to the single 



 

9 
 

ground bounce returns; and the last term is the double ground bounce 
contribution. 

 

Note that if the global coordinate system is aligned with the local coordinate 

system used for the definition of ( ),
l

S ⋅ ⋅  in Section 2, then ( ) ( ), ,
g l

S S⋅ ⋅ = ⋅ ⋅ . 

Otherwise, for an arbitrarily oriented cylinder, the scattering matrix ( ),
g

S ⋅ ⋅  

should be modified as 

 ( ) ( )
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

gl gl gl glg l
s s s s i i i il l

b a b agl gl gl gl
s s s s i i i i

v v v h v v v h
S k k S k k

h v h h h v h h

   ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅   

⋅ ⋅ ⋅ ⋅      
,  (50) 

in which ( îv , îh ), ( ˆsv , ŝh ),  and ( ˆ
ak , b̂k ) are the original global coordinate 

vectors; ( ˆgl
iv , ˆgl

ih ) and ( ˆgl
sv , ˆgl

sh ) are the polarization vectors in the cylinder’s 

local coordinate system written in global coordinates—these correspond to ˆl
ak  

and ˆl
bk , respectively. Note that ˆ ˆlg

l
a ak T k=  and ˆ ˆlg

l
b bk T k= . Here, it is assumed that 

vector transformations from global to local coordinates (or vice versa) can be 

accomplished with a transformation matrix 
lg

T (or 
Tgl lg

T T =  
 

).   

4. Numerical Results 

The backscattering cross section of a tilted, finite-length, dielectric circular 
cylinder is shown in Figs. 1–3 for the free-space and half-space cases, as 
calculated with Eqs. 38 and 48. The cylinder has radius a = 15 cm and length 
L = 7.5 m and is centered at (0.49,1.26,3.58)or ≈

 , with its axis parallel to the 
vector (0.12, 0.32, 0.94) . The cylinder and ground have relative dielectric 
constant and conductivity (εr, σd) of (13.9, 39 mS/m) and (5.45, 20 mS/m), 

respectively. The backscattering cross section is defined as ( ) 2ˆ ˆ4 ,pq pq i iS k kσ π= − . 

The incidence angles here are set as 40iθ = °  and 200iφ = ° . Because of the 
dihedral-like effect, an enhancement in the return is observed for the co-polarized 
responses when the cylinder is located above a ground; a similar effect is not 
apparent for the cross-polarized responses in this example. Note that reciprocity 
dictates hv vhS S= −  in the backscattering direction.18 Although the formulation 
given in Section 2 obeys this relation, the multiray approach given in Section 3 
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does not. In view of this deficiency in the half-space solution, the average cross-
polarized response (that is, ( ) 2hv vhS S− ) is plotted in Fig. 3.  

 

 

Fig. 1 Backscattering cross section (as function of frequency) of a tilted, finite-length, 
dielectric circular cylinder located in free space and above a half space: vv response. 
Parameters: a = 15 cm; L = 7.5 m; 40iθ = ° ; and 200iφ = ° . 

 

Fig. 2 Backscattering cross section (as function of frequency) of a tilted, finite-length, 
dielectric circular cylinder located in free space and above a half space: hh response. 
Parameters are the same as those in Fig. 1. 
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Fig. 3 Backscattering cross section (as function of frequency) of a tilted, finite-length, 
dielectric circular cylinder located in free space and above a half space: hv response. 
Parameters are the same as those in Fig. 1. 

5. Conclusions 

The complete derivation of a closed-form formulation for the scattering matrix of 
the finite-length, dielectric circular cylinder has been presented. The semi-exact 
solution is obtained by approximating the internal fields of the finite-length 
cylinder with those of the infinite-length case, which has an exact solution 
available through modal analysis. Application of the volumetric equivalence 
principle enables the generalized far-field response of the scatterer to be 
characterized in an efficient manner. The theory is first developed for a cylinder 
in free space; subsequently, the problem of the cylinder located above a flat 
dielectric ground is considered with a multiray technique in which the ground 
effects are taken into account through the introduction of reflection coefficient 
matrices and phase delay terms. The scattering response of an arbitrarily oriented 
cylinder is obtained by supplementing the canonical formulation with appropriate 
coordinate transformation matrices. The complete solution established above 
facilitates the development of the discrete scatterer approach for characterizing 
the scattering return from tree structures. An evaluation of the accuracy of the 
solution and a determination of its region of validity is the subject of Part II of this 
study. 
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